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ABSTRACT

The basic processes in univariate statistics involve partitioning the sum of squares into two

components: explained and within. The present paper explains that the same partitioning

occurs in measurement analyses, i.e., splitting the sum of squares into reliable and

unreliable components. In addition, it will be shown how the three types of error inherent

in all statistical analyses (i.e., sampling error, model specification error, and measurement

error) impact any analysis the researcher attempts. Also emphasized will be that tests are

not reliable, rather scores have varying degrees of reliability.
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Basic Concepts in Classical Test Theory: Relating Variance

Partitioning in Substantive Analyses to the Same Process in Measurement Analyses.

Variance in the dependent variable is the crux of all statistical analyses, hence, it is

the focus of all statistical analyses. As an analogy, the variance observed in the dependent

variable can be viewed as making up one entire pie, e.g., as the variance increases, so

would the size of the pie--usually the size of the pie is equal to the sum of squares (SOS)

total. Further, there are three different ways to interpret variance in the dependent

variable, or "knives" which can be used to cut the pie. One knife will discriminate

between which ingredients were used, another will describe how much of which

ingredient, and yet another that will give an indication of how accurate the baking process

is (measuring cups or utensils used to make the pie actually are). In statistical analyses,

these knives are the "who," "how," and "reliability" partitons of the observed variance,

i.e., who accounts for the variance, how the variance is accounted for by other variables,

and the reliability of the measurement. Which knife we use depends on what question we

want to answer. Further, there is error directly associated with each knife, i.e., sampling

error, model specification error, and measurement error respectively.

In a substantive context, variance is partitioned into "who" accounts for it and

"how" it is accounted for (via which predictor variable). All substantive analyses are in

effect, regression, i.e., they all produce a y-hat and an error score. The present paper will

show that the same model that is utilized in substantive analyses for partitioning the

observed variance into explained and unexplained components, is also used to partition the

variance in a measurement context into reliable and unreliable components. Indeed, the

substantive and measurement contexts even have similarities at the sore level.
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In a measurement context, partitioning focuses on reliability. Measurement

analyses asks about the stability, equivalency, or consistency of the dependent variable

score(s). That is, with what amount of certainty can the researcher believe that the

obtained value or score will replicate in the future, or that the obtained value or score is

"true". Reliability generally refers to the degree to which test scores are free from

measurement error (Sax, 1989). Reliability always refers to the scores obtained on an

instrument for a particular group of examinees on a particular occasion- -and not the

instrument itself (Eason, 1991; Rowley, 1976; Thompson, 1994). Reliability also impacts

effect sizes in substantive research, as will be explained below.

Heuristic Examples of Substantive Analyses

Who accounts for the variance?

For answering the "who" question in substantive analyses, the variance observed is

partitioned by who (which participant) accounts for, and the amount of variance they

account for, in the total observed (or dependent variable) score. IfMarjie, Tommy, and

Diane all completed a hypothetical newly formed short version of the Behavior

Assessment for Children (BASC) (Reynolds & Kamphaus, 1994) to identify future school

performance, a "who" analysis could look something like Table 1 and Figure 1.

Insert Table 1 and Figure 1 here

Thus, the sum of squares (SOS) total is partitioned into its component parts

according to who accounts for how much of the total. As with all analyses, error is a

factor. In the formula, yi= NI; + YMean, there is no error component. This is because the
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type of error that impacts the who analysis is sampling error. If the sample is not

representative of the population, then Figure 1 will not reflect reality. For example, if the

sample is drawn from the tails of the population distribution, then the SOStotai will be

overestimated, leading to erroneous findings. However, the sampling error would not

effect the SOS at the individual score level though.

How the Variance is Accounted For

The other substantive "knife" cuts the variance into how it is made up. In a "how"

analysis, a predictor variable is added to see how much variance that predictor variable

accounts for, or does not account for, in the total observed variance. Assume that the

small sample utilized in Table 1 reflects the total population. Assume also that this

researcher wants to predict that an age difference as little as a few months will make a

difference on the BASC's identification of future school performance. If all three students

above were 7 years old at the time of administration, but Marjie was 1 month past 7 years

old, Tommy was 2 months past 7 years old, and Diane was 6 months past 7 years old, then

number of months could be a predictor variable, and the "how" substantive analysis could

look like Table 2 and Figure 2.

Insert Table 2 and Figure 2 here

Error variance found in this model (yi = yhati + e,odel) would be due to choosing

the wrong predictor variable(s); thus, model specification error--the predictor variable did

not account for all the variance in the dependent variable, meaning something else does.

In Table 2b, a regression model is utilized to partition the variance into explained and

6
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unexplained components to determine how months of age explains, or does not explain,

the dependent variable variance.

Heuristic Examples of Measurement Analyses

As stated earlier, from a measurement perspective (the last of the three ways of

partitioning variance, depending on which questions the study wishes to answer),

reliability is the question addressed. Will these results replicate? This is important to

know for many reasons. For example, if someone's IQ fluctuated by 50 points each time

they were tested, then those measurements on that IQ test give no dependable information

and are unreliable. Using unreliable data such as that would be as inane as attempting to

predict a person's IQ from their shoe size: it's not possible, i.e., not stable, not equivelant,

not consistent, NOT RELIABLE.

Taking the substantive equation yi = yhat; + ei, we substitute T (true score) for

yhat, and en. (measurement error) for e. Thus, the equation becomes: yi= Ti+

This equation is the true-score theory's premise: that a person's observed score is equal

to that person's true score + error. True score in this sense speaks to the "pure"

indigenous trait the person holds--the true knowledge or ability (Sax, 1989). This value is

a hypothetical value and is expected to yield consistent knowledge of individual

differences. The true score is based on the premise that the person's inherent ability is

stable, and over repeated testing the mean of those scores would be the true value. Since

infinite numbers of repeated testing are not feasible, the obtained value + measurement

error is substituted for the true score. A measurement which contained no error, would in

fact measure only true ability, so in a sense by measuring reliability, we are approximating

true scores (Pedhazur &Schmelkin, 1991). Since true scores are not known, then the

7
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amount of measurement error cannot be known either. Still, it is possible to estimate the

effect of measurement error in general (Sax, 1989). To the extent that error is eliminated,

reliability will be high. When measurement error variance is high, there must be a

corresponding decrease in reliability. Similarly, when error variance is reduced, true and

obtained scores will more closely approximate each other, thereby increasing reliability

(Sax, 1989). In classical test theory there are three ways to measure reliability:

measurement error resulting through an error in test occasions (stability), or an error in

test forms (equivalence), or an error in items (internal consistency) (Crocker & Algina,

1986). We will explore these methods in the order given.

Reliability as Stability

The test-retest method has been utilized to measure the stability of scores over a

period of time. If individuals respond consistently from one test to another, the

correlation between the test scores will be high. Some researchers point to the squared

correlation coefficient as a coefficient of stability. The time difference between tests

impacts the stability coefficients. If time intervals between tests are short, the stability

coefficients are likely to be high. If the time period is longer, the stability coefficient is

likely to be lower (Pedhazur & Sclunellcin, 1991). This is one reason to speak about the

reliability of measurements and not the reliability of tests--the test is the same one given

at a different point in time, possibly yielding much different reliability coefficients as test

intervals are varied! A shorter interval usually produces higher stability coefficients than

a longer time interval. To demonstrate how a regression model can be employed in both

a substantive and measurement context, the same heuristic data set will be used in this

example as in the previbus example. If the students reported on earlier were administered

8
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the same test at a different point in time, a test-retest measure of reliability might look

something like Table 3 and d Figure 3. Let Yi= the first administration and Y2 = the

second administration of the BASC.

Insert Table 3 and Figure 3 here

As can be seen in Table 3b, the derivation of the true score and, measurement error in a

measurement context (i.e., partitioning the variance into reliable versus unreliable

components), is the same one employed in a substantive context utilizing yhats and error

scores to partition variance into explained versus unexplained components. The

mechanics of the partitioning is the same, only the purposes of the partitoning differ.

Following the premise of true-score theory, any error inherent in this design would

be due to the measurement process, and not changes in the individual themselves, because

as stated earlier, the "pure" indeginous trait the person holds, is consistently present.

Reliability as Equivalence

These same methods can be used in the second measure of reliability - the

equivalence, or parallel forms of a test. In this measure, two or more forms of a test are

constructed and administered to the same person at approximately the same time. To

eliminate practice or transfer effects, half of the participants take one form followed by

the other, and the sequence is reversed for the other half of participants. The correlation

between the scores on the forms is a measure of their equivalence, and is designated as a

reliability index. When squared, this reliability index is the reliability coefficient of the

measurement (Gronlund & Linn, 1990). All reliability coefficients are squared concepts.

9
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As stated earlier, this example elucidates the fact that a reliability coefficient places

a ceiling on effect sizes (Rienhardt, in press). From a reliability standpoint, the e,., is the

part of the pie that cannot be eaten (explained). As can be seen in Figure 4, the ems =

20%. If we add a predictor variable that explained all the remaining 80% of the pie, an

effect size could not exceed that 80%. In the worst case scenario, a dependent variable is

measured such that scores are perfectly unreliable, hence, the effect size will be "0", and

the results will not be statistically significant at any sample size, even an incredibly large

one (Reinhardt, in press).

Insert Figure 4 here

Parallel forms are never perfectly correlated and the further from a correlation of 1

that they differ, the greater the amount of unreliability. However, because equivalence is

determined by correlating scores on tests designed to be parallel, the unreliability must

come from differences in item sampling and not, as in measures of stability, changes within

the individuals themselves. The exact same methods for deriving T scores and

measurement error utilized in the test-retest example are employed in the equivalence

check on reliability.

Reliability as Consistency

The final technique of estimating reliability, is the internal consistency method.

Because of practicality, most teachers, psychologists and researchers will usually not

administer the same test twice, or develop an alternate form of an instrument. In most

cases researchers would like to estimate reliability from one administration of an

1



Variance Partitioning 10

instrument. This desire has led to measures of internal consistency, historically, the split-

half method. In this method, one test or instrument is split in half and the 2 halves are

treated as alternate forms of the other, thereby obviating the need to construct more than

one instrument (Gronlund & Linn, 1990).

Many different ways of splitting a test are available, but the most important

consideration is that the two halves be parallel. If we use the same example employed

previously, and split the items by way of even (E) or odd numbers (0), the resulting scores

would look like Table 4 and Figure 5.

Insert Table 4 and Figure 5 here

When a correlation coefficient is computed on a split-half reliability measure, the resulting

correlation is a measure of the "agreeability" between one half of the instrument and the

other. When squared, such correlations provide a measure of reliability for half an

instrument, but not for the instrument as a whole. To estimate the reliability of the whole

instrument from knowledge of the correlation between the halves, the Spearman-Brown

formula must be employed (Thorndike, Cunningham, Thorndike, & Hagen, 1991), and is

as follows:

2 X the correlations between the halves
1 + the correlations between the halves

From the example in Table 4: 2(.94)/1+.94 = 1.88/1.94 = .97, r2 = .94

Thus the actual correlation between the two halves of the test is .97, and when squared,

this is the reliability of the measurement in terms of consistency (.94).
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Coefficient Alpha a (also named, "Cronbach's alpha," (Cronbach, 1951)) is

another measure of internal consistency that is a squared concept, even though there is no

squared sign in the symbol designating a. Theoretically, coefficient alpha is an estimate of

the squared correlation expected between two tests drawn at random from a pool of items

similar to the items in the test under construction (Pedhazur & Scmelkin, 1991).

Coefficient alpha can be used as an index of internal consistency conceptually exhibiting

how item responses correlate with total test score, and employs the same concept as the

split-half measure of internal consistency, except that coefficient alpha pairs each item on

the instrument with all combinations of all other items. Coefficient alpha is superior to the

use of split-half measures, because as stated earlier, there are many different ways in which

to split an instrument. Estimates associated with different splits for the same data may

yield contradictory results (Sax, 1989). For example, a 4-item test has 3 splits, a 6-item

test has 10 splits; and for a test with 10 items, there are 126 different ways to split the test

(Reinhardt, in press)! So, as the number of items increase, so do the number of possible

splits. The formula for coefficient alpha is as follows:

a = k/k-1(1-Ecr2i/a2.)

k is the number of items
Ea2i= the sum of the variances of the items
cr2x= the variance of the total score, or composite score

where k is the number of items; fa2z = the sum of the variances of the items; and cr2= the

variance of the total score, or composite score (Pedhazur & Schmelkin, 1991). Using our

data set of the children's scores on the BASC, coefficient alpha would look something like

Table 5.

12
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Insert Table 5 here

The P values in Table 5 are derived by finding the ratio of scores of 1 on an item, to a

score of 0. In item one this is 2/3 = .66. The P value is also an index of item

homogeneity, i.e., how alike the P values are gives an indication as to how varied the

scores are. The item variance is found and summed (in this example, item variance =

1.05). The composite score is computed by finding the variance of the row totals:

7+8+3=18. In this case the composite variance = 7.02. The numbers are then plugged

into the above formula giving a coefficient alpha: 8/7 (1-1.05/7.02) = .97. Therefore, we

have an estimate of the reliability of the items and how they relate to each other, and to

total test variance.

Upon examination of the formula for coefficient alpha, we find that the total item

variance is the numerator, and total test or composite score, is the denominator. The

alpha coefficient is 1 minus this ratio. Therefore, it behooves the test constructor to

maximize total test variance, while item variance is minimized. As can be seen from the

following hypothetical data sets, the alpha coefficient can even be negative (Reinhardt, in

press). This usually happens when item variance is larger than total test variance (Arnold,

1996). Table 6 and Figure 6 are employed to help make these concepts concrete.

Insert Table 6 and Figure 6 here

13
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From these results in this data set, it can be inferred that maximum total test

variance is important to maximize coefficient alpha, and that total test variance has more

impact on alpha than item variance.

Another measure of internal consistency for dichotomously-scored items is the

KR-20 formula. The KR20 formula and the alpha coefficient formula are the same, except

for the derivation of item variance, as can be seen below:

KR-20 = k/k-1(1-E pq/a2Total)

a= kik 1 (1 Ecy21 /62Total)

But the formulas are algebraically equivalent, even though the ways for computing item

variance seem different.

Summary

In sum, the present paper has explained the three types of statistical analyses and

the corresponding error which accompanies each. Two of the analyses are substantive

("who" and "how"), and one involves a measurement perspective (reliability). Further, the

same method to analyze the data (regression) has been utilized in both substantive and

measurement analyses to partition explained versus unexplained variance, and reliable

versus unreliable variance in the dependent variable, according to which question the

researcher wishes to answer. The "classical" methods of estimating reliability have been

explained with an empha'sis on coefficient alpha.

14
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Table 1

Hypothetical data for a "who" analysis

Student Y Y-Mean y2

Marjie 7 1 1

Tommy 8 2 4

Diane 3 -3 9

SUMS 18 0 14

MEAN 6

17
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Figure 1. Venn diagram displaying

partitioned variance reflecting a "who"

analysis.

= + YMean

M T T T D D D

T D D D D D D

Note. M = Marjie, T = Tommy,

D = Diane.



Table 2

"How" analysis with predictor "X" being

months of age

x x2Student Y X

Marjie 7 1 -2 4

Tommy 8 2 -1 1

Diane 3 6 -3 9

SUMS 18 9 0 14

MEAN 6 3

SD. 2.65

COVXY -6.5

-.93

r2 .86

b. Student Y X Yhat emg

Marjie 7 1 7.86 -.86

Tommy 8 2 6.93 1.07

Diane 3 6 3.21 -.21

SUMS 18 9 18 0

MEAN 6 3

Student ghat yhat2

Marjie 1.86 3.46 -.86 .74

Tommy .93 .86 1:07 1.14

Diane -2.79 7.78 -.21 .04

Sums 12.10 1.90

Variance Partitioning 17

Figure 2. Venn diagram displaying

partitioned variance reflecting a "how"

analysis.

18

SOS yhat = 12.10

SOS emodel = 1.90
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Table 3 Figure 3. Venn diagram partitioning

Test - retest method on hypothetical variance into reliable versus unreliable

BSAC scores components by way of stability.

MTStudent Yjyjy2 I2
Marjie 7 1 1 5 -.33 .11

Tommy 8 2 4 7 1.67 2.79

Diane 3 -3 9 4 -1.33 1.77

SUMS 18 14 16 4.67

MEAN 6 5.33

SD 2.65 1.53

COVyiy2 3.5

ryiy2 .86

r2 .74

b. Regression model for test-retest data

substituting T

Student T t t2

Marjie 5.52 -.49 .24 1.48 2.19

Tommy 8.5 2.49 6.2 -.5 .25

Diane 4.03 1.98 3.9 -1.0 1.06

SUMS 18.0 0 10.4 3.5

MEAN 6.0

19

SOST. = 10.5

SOS erne.= 3.5
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Figure 4. Example of a reliability coefficient between parallel forms of an instrument, placing a

ceiling on effect size.

r = 80 r2 < 80yly2 Yx

Table 4 Figure 5. Venn diagram partitioning

Split-half method on hypothetical BASC variance into reliable versus unreliable

scores components by way of consistency.

Student 0 o o2 E e e2

Marjie 3 .7 .49 4 .33 .11

Tommy 3 .7 .49 5 1.3 1.8

Diane 1 -1.3 1.7 2 -1.7 2.8
SUMS 7 2.7 11 4.7
MEANS 2.3 3.7
SD 1.15 1.53

COV. 1.67
roe .94

20



Table 5

Student Items

Variance Partitioning 20

1 2 3 4 5 6 7 8 Score
Marjie 1 1 1 1 0 1 1 1 7

Tommy 1 1 1 1 1 1 1 1 8

Diane 0 0 1 0 0 1 0 1 3

P .66 .66 100 .66 .33 100 .66 100 E 18

q .33 .33 0 .33 .66 0 .33 0

a2[Pxci] .21 .21 0 .21 .21 0 .21 0 1.05

Table 6

Probability Target Matrix Depicting Effects of Item and Composite Variance on Coefficient Alpha

a. MIN TEST VARIANCE, MAX ITEM VARIANCE, HOMOGENEOUS
Known Results for the population

Item
ni 1 2 3 4 5 6 7 TOTAL
1 1 0 1 0 1 0 1 4

2 0 1 0 1 0 1 0 3

3 1 0 1 0 1 0 1 4
4 0 1 0 1 0 1 0 3

5 1 0 1 0 1 0 1 4

6 0 1 0 1 0 1 0 3

7 1 0 1 0 1 0 1 4
8 0 1 0 1 0 1 0 3

9 1 0 1 0 1 0 1 4

10 0 1 0 1 0 1 0 3

p .5 .5 .5 .5 .5 .5 .5

vark .25 .25 .25 .25 .25 .25 .25 .25

a = 1.166667 x (1 - (1.75 / .25) ) = -7

Note. Table adapted from "Factors Affecting Coefficient Alpha: A Mini Monte Carlo

Study," by B. Reinhardt, (in press), in B. Thompson (Ed.), Advances in social science methodology (Vol.

4). Greenwich, CT: JAI Press. Adapted with permission.

21
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b. MOD TEST VAR, MOD ITEM VAR, HETEROGENEOUS 2
Known Results for the Population

Item
1 2 3 4 5 6 7 TOTAL

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 1 1 1 1 4

7 0 0 0 0 1 1 1 3

8 0 0 0 1 1 1 1 4

9 0 0 0 0 1 1 1 3

10 0 0 0 1 1 1 1 4

p 0 0 0 .3 .5 .5 .5

vark 0 0 0 .21 .25 .25 .25 3.36

a = 1.16667 x (1 - (.9600001 / 3.36)) = .8333333

Note. Table adapted from "Factors Affecting Coefficient Alpha: A Mini Monte Carlo

Study," by B. Reinhardt, (in press), in B. Thompson (Ed.), Advances in social science methodology (Vol.

4). Greenwich, CT: JAI Press. Adapted with permission.
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c. MAX TEST VAR, MAX ITEM VAR, HOMOGENEOUS
Known Results for the population

Item
ni 1 2 3 4 5 6 7 TOTAL
1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 1 1 1 1 1 1 1 7

7 1 1 1 1 1 1 1 7

8 1 1 1 1 1 1 1 7

9 1 1 1 1 1 1 1 7
10 1 1 1 1 1 1 1 7

p .5 .5 .5 .5 .5 .5 .5

vary .25 .25 .25 .25 .25 .25 .25 12.25

a = 1.166667 x (1 - (1.75 / 12.25)) = 1

Note. Table adapted from "Factors Affecting Coefficient Alpha: A Mini Monte Carlo

Study," by B. Reinhardt, (in press), in B. Thompson (Ed.), Advances in social science methodology (Vol.

4). Greenwich, CT: JAI Press. Adapted with permission.
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Figure 6. Variance of Scores on Dichotomously-Scored Items With 10 Examinees

.25

.24

.23

.22
I .21
t .20
e .19
m .18

.17
V .16
a .15

.14
i .13
a .12
n .11
c .10
e .09

.08

.07

.06

.05

.04
.03
.02
.01
.00

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Item g Value

Note. With 10 examinees completing a given item, there are 11 possible p_values, each with an

associated item variance.

Note. Table adapted from "Factors Affecting Coefficient Alpha: A Mini Monte Carlo
Study," by B. Reinhardt, (in press), in B. Thompson (Ed.), Advances in social science methodology (Vol.

4). Greenwich, CT: JAI Press. Adapted with permission.
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